Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38561051

RESUMO

PURPOSE: We present the final analyses of tumour dynamics and their prognostic significance during a 6-week course of concurrent chemoradiotherapy (chemoRT) for glioblastoma (GBM) in the GLIO study. METHODS AND MATERIALS: This is a prospective serial MR imaging study in 129 patients with GBM who had MRIs obtained at RT planning (F0), fraction-10 (F10), fraction-20 (F20), and 1-month post-RT. Tumour dynamics assessed included gross tumour volume (GTV) relative to F0 (Vrel), and tumour migration distance (dmigration). Covariables evaluated included: corpus callosum involvement, extent of surgery, MGMT methylation and IDH mutation status. RESULTS: The median Vrel were 0.85 (range: 0.25-2.29) at F10, 0.79 (range: 0.09-2.22) at F20 and 0.78 (range: 0.13-4.27) at P1M. The median dmigration were 4.7mm (range: 1.1-20.4mm) at F10, 4.7mm (range: 0.8-20.7mm) at F20 and 6.1mm (range: 0.0-45.5mm) at P1M. Compared to patients who had corpus callosum involvement (n=26), those without corpus callosum involvement (n=103) had significant Vrel reduction at F20 (P=0.03) and smaller dmigration at F20 (P=0.007). Compared to patients who had biopsy alone (n=19) and subtotal resection (n=71), those who had gross total resection (n=38) had significant Vrel reduction at F10 (P=0.001) and F20 (P=0.001) and a smaller dmigration at F10 (P=0.03) and F20 (P=0.002). MGMT methylation and IDH mutation status were not significantly associated with tumour dynamics. The median progression free survival and overall survival (OS) were 8.5 months (95%CI=6.9-9.9) and 20.4 months (95%CI=17.6-25.2). In multivariable analyses, patients with Vrel≥1.33 at F10 had worse OS (HR=4.6; 95%CI=1.8-11.4; P=0.001), while patients with dmigration≥5mm at 1-month post-RT had worse PFS (HR=1.76; 95%CI=1.08-2.87) and OS (HR=2.2; 95%CI=1.2-4.0; P=0.007). CONCLUSION: Corpus callosum involvement and extent of surgery are independent predictors of tumour dynamics during RT and can enable patient selection for adaptive RT strategies. Significant tumour enlargement at F10 and tumour migration 1-month post-RT were associated with poorer OS.

2.
Med Phys ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598107

RESUMO

BACKGROUND: Current methods for Gamma Knife (GK) treatment planning utilizes either manual forward planning, where planners manually place shots in a tumor to achieve a desired dose distribution, or inverse planning, whereby the dose delivered to a tumor is optimized for multiple objectives based on established metrics. For other treatment modalities like IMRT and VMAT, there has been a recent push to develop knowledge-based planning (KBP) pipelines to address the limitations presented by forward and inverse planning. However, no complete KBP pipeline has been created for GK. PURPOSE: To develop a novel (KBP) pipeline, using inverse optimization (IO) with 3D dose predictions for GK. METHODS: Data were obtained for 349 patients from Sunnybrook Health Sciences Centre. A 3D dose prediction model was trained using 322 patients, based on a previously published deep learning methodology, and dose predictions were generated for the remaining 27 out-of-sample patients. A generalized IO model was developed to learn objective function weights from dose predictions. These weights were then used in an inverse planning model to generate deliverable treatment plans. A dose mimicking (DM) model was also implemented for comparison. The quality of the resulting plans was compared to their clinical counterparts using standard GK quality metrics. The performance of the models was also characterized with respect to the dose predictions. RESULTS: Across all quality metrics, plans generated using the IO pipeline performed at least as well as or better than the respective clinical plans. The average conformity and gradient indices of IO plans was 0.737 ± $\pm$ 0.158 and 3.356 ± $\pm$ 1.030 respectively, compared to 0.713 ± $\pm$ 0.124 and 3.452 ± $\pm$ 1.123 for the clinical plans. IO plans also performed better than DM plans for five of the six quality metrics. Plans generated using IO also have average treatment times comparable to that of clinical plans. With regards to the dose predictions, predictions with higher conformity tend to result in higher quality KBP plans. CONCLUSIONS: Plans resulting from an IO KBP pipeline are, on average, of equal or superior quality compared to those obtained through manual planning. The results demonstrate the potential for the use of KBP to generate GK treatment with minimal human intervention.

3.
Neuro Oncol ; 26(12 Suppl 2): S3-S16, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38437669

RESUMO

Chemoradiotherapy is the standard treatment after maximal safe resection for glioblastoma (GBM). Despite advances in molecular profiling, surgical techniques, and neuro-imaging, there have been no major breakthroughs in radiotherapy (RT) volumes in decades. Although the majority of recurrences occur within the original gross tumor volume (GTV), treatment of a clinical target volume (CTV) ranging from 1.5 to 3.0 cm beyond the GTV remains the standard of care. Over the past 15 years, the incorporation of standard and functional MRI sequences into the treatment workflow has become a routine practice with increasing adoption of MR simulators, and new integrated MR-Linac technologies allowing for daily pre-, intra- and post-treatment MR imaging. There is now unprecedented ability to understand the tumor dynamics and biology of GBM during RT, and safe CTV margin reduction is being investigated with the goal of improving the therapeutic ratio. The purpose of this review is to discuss margin strategies and the potential for adaptive RT for GBM, with a focus on the challenges and opportunities associated with both online and offline adaptive workflows. Lastly, opportunities to biologically guide adaptive RT using non-invasive imaging biomarkers and the potential to define appropriate volumes for dose modification will be discussed.


Assuntos
Glioblastoma , Neurologia , Radioterapia (Especialidade) , Humanos , Glioblastoma/radioterapia , Quimiorradioterapia
4.
Artigo em Inglês | MEDLINE | ID: mdl-38395085

RESUMO

PURPOSE: Although spine stereotactic body radiation therapy (SBRT) is considered a standard of care in the mobile spine, mature evidence reporting outcomes specific to sacral metastases is lacking. Furthermore, there is a need to validate the existing sacral SBRT international consensus contouring guidelines to define the optimal contouring approach. We report mature rates of local failure (LF), adverse events, and the effect of contouring deviations in the largest experience to date specific to sacrum SBRT. METHODS AND MATERIALS: Consecutive patients who underwent sacral SBRT from 2010 to 2021 were retrospectively reviewed. The primary endpoint was magnetic resonance imaging-based LF with a focus on adherence to target volume contouring recommendations. Secondary endpoints included vertebral compression fracture and neural toxicity. RESULTS: Of the 215 sacrum segments treated in 112 patients, most received 30 Gy/4 fractions (51%), 24 Gy/2 fractions (31%), or 30 Gy/5 fractions (10%). Sixteen percent of segments were nonadherent to the consensus guideline with a more restricted target volume (undercontoured). The median follow-up was 21.4 months (range, 1.5-116.9 months). The cumulative incidence of LF at 1 and 2 years was 18.4% and 23.1%, respectively. In those with guideline adherent versus nonadherent contours, the LF rate at 1 year was 15.1% versus 31.4% and at 2 years 18.8% versus 40.0% (hazard ratio [HR], 2.5; 95% CI, 1.4-4.6; P = .003), respectively. On multivariable analysis, guideline nonadherence (HR, 2.4; 95% CI, 1.3-4.7; P = .008), radioresistant histology (HR, 2.4; 95% CI, 1.4-4.1; P < .001), and extraosseous extension (HR, 2.5; 95% CI, 1.3-4.7; P = .005) predicted for an increased risk of LF. The cumulative incidence of vertebral compression fracture was 7.1% at 1 year and 12.3% at 2 years. Seven patients (6.3%) developed peripheral nerve toxicity, of whom 4 had been previously radiated. CONCLUSIONS: Sacral SBRT is associated with high efficacy rates and an acceptable toxicity profile. Adhering to consensus guidelines for target volume delineation is recommended to reduce the risk of LF.

5.
Clin Transl Radiat Oncol ; 45: 100722, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38234697

RESUMO

Accurate urethra contouring is critical in prostate SBRT. We compared urethra contouring on CT-urethrogram and T2-weighted MRI. The dice similarity coefficient, Jaccard index, Hausdorff distance and mean distance to agreement were evaluated. All four metrics indicate better agreement and less variability in urethra contouring on CT-urethrogram, compared to T2-weighted MRI.

6.
Int J Radiat Oncol Biol Phys ; 118(3): 662-671, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37793575

RESUMO

PURPOSE: The optimal modern radiation therapy (RT) approach after surgery for atypical and malignant meningioma is unclear. We present results of dose escalation in a single-institution cohort spanning 2000 to 2021. METHODS AND MATERIALS: Consecutive patients with histopathologic grade 2 or 3 meningioma treated with RT were reviewed. A dose-escalation cohort (≥66 Gy equivalent dose in 2-Gy fractions using an α/ß = 10) was compared with a standard-dose cohort (<66 Gy). Outcomes were progression-free survival (PFS), cause-specific survival, overall survival (OS), local failure (LF), and radiation necrosis. RESULTS: One hundred eighteen patients (111 grade 2, 94.1%) were identified; 54 (45.8%) received dose escalation and 64 (54.2%) standard dose. Median follow-up was 45.4 months (IQR, 24.0-80.0 months) and median OS was 9.7 years (Q1: 4.6 years, Q3: not reached). All dose-escalated patients had residual disease versus 65.6% in the standard-dose cohort (P < .001). PFS at 3, 4, and 5 years in the dose-escalated versus standard-dose cohort was 78.9%, 72.2%, and 64.6% versus 57.2%, 49.1%, and 40.8%, respectively, (P = .030). On multivariable analysis, dose escalation (hazard ratio [HR], 0.544; P = .042) was associated with improved PFS, whereas ≥2 surgeries (HR, 1.989; P = .035) and older age (HR, 1.035; P < .001) were associated with worse PFS. The cumulative risk of LF was reduced with dose escalation (P = .016). Multivariable analysis confirmed that dose escalation was protective for LF (HR, 0.483; P = .019), whereas ≥2 surgeries before RT predicted for LF (HR, 2.145; P = .008). A trend was observed for improved cause-specific survival and OS in the dose-escalation cohort (P < .1). Seven patients (5.9%) developed symptomatic radiation necrosis with no significant difference between the 2 cohorts. CONCLUSIONS: Dose-escalated RT with ≥66 Gy for high-grade meningioma is associated with improved local control and PFS with an acceptable risk of radiation necrosis.


Assuntos
Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/radioterapia , Meningioma/cirurgia , Intervalo Livre de Progressão , Modelos de Riscos Proporcionais , Neoplasias Meníngeas/radioterapia , Neoplasias Meníngeas/cirurgia , Necrose
7.
Med Phys ; 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38088935

RESUMO

BACKGROUND: The radiotherapy process relies on several metrics in determining a notion of "distance" from one three-dimensional region-of-interest (ROI) to another. The majority are symmetric (or commutative) and do not contain information pertaining to directionality. Growth versus regression, for example, is not inherently distinguished by these metrics. PURPOSE: The purpose of this work was to formalize a unidirectional distance metric, motivated by radiotherapy margin concepts, which we term the migration distance. Informally, the migration distance from ROI X to Y is the minimum isotropic expansion of X such that Y is completely encompassed by the expansion. If Y is contained within X, the migration distance is negative with magnitude equal to the maximum isotropic contraction of X such that Y remains contained within contraction. The metric is demonstrated by quantifying glioblastoma interfraction target changes. METHODS: An explicit mathematical formulation of the migration distance is presented and contrasted with the related Hausdorff distance. The results are demonstrated for the gross tumor volume (GTV) dynamics of a glioblastoma cohort consisting of 111 patients that underwent standard chemoradiotherapy with offline MR imaging at planning, fraction 10, fraction 20, and 1-month post radiotherapy. RESULTS: The mean ± SD of the GTV migration distance relative to planning was 5.9 ± 3.9 mm at fraction 10, 6.2 ± 4.4 mm at fraction 20, and 7.9 ± 7.1 mm at 1-month post radiotherapy. The maximum GTV migration distance across all patients at the same timepoints was 20.4, 20.7, and 45.5 mm, respectively. CONCLUSIONS: We have proposed and demonstrated a unidirectional distance metric. The migration distance may have applications in the quantification of anatomical changes, planning target volume designs, and dosimetric radiotherapy plan assessment.

8.
Radiother Oncol ; 188: 109873, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37640160

RESUMO

BACKGROUND AND PURPOSE: Survival in glioblastoma might be extended by escalating the radiotherapy dose to treatment-resistant tumour and adapting to tumour changes. Diffusion-weighted imaging (DWI) on MRI-linear accelerators (MR-Linacs) could be used to identify a dose escalation target, but its prognostic value must be demonstrated. The purpose of this study was to determine whether MR-Linac DWI can assess treatment response in glioblastoma and whether changes in DWI show greater prognostic value than changes in the contrast-enhancing gross tumour volume (GTV). MATERIALS AND METHODS: Seventy-five patients with glioblastoma were treated with chemoradiotherapy, of which 32 were treated on a 1.5 T MRI-linear accelerator (MR-Linac). Patients were imaged with simulation MRI scanners (MR-sim) at treatment planning and weeks 2, 4, and 10 after treatment start. Twenty-eight patients had additional MR-Linac DWI sequences. Cox modelling was used to evaluate the correlation of overall and progression-free survival (OS and PFS) with clinical variables and volumetric changes in the GTV and low-ADC regions (ADC < 1.25 µm2/ms within GTV). RESULTS: In total, 479 MR-Linac DWI and 289 MR-sim DWI datasets were analyzed. MR-Linac low-ADC changes between weeks 2 and 5 inclusive were prognostic for OS (hazard ratio lower limits ≥ 1.2, p-values ≤ 0.02). MR-sim low-ADC changes showed greater correlation with OS and PFS than GTV changes (e.g., OS hazard ratio at week 2 was 3.4 (p <0.001) for low-ADC versus 2.0 (p = 0.022) for GTV). CONCLUSION: MR-Linac DWI can measure low-ADC tumour volumes that correlate with OS and PFS better than contrast-enhancing GTV. Low-ADC regions could serve as dose escalation targets.

9.
Pract Radiat Oncol ; 13(6): 499-509, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37597616

RESUMO

The proposed recommendations are primarily based on the consensus opinion and in-field experience of the Ontario Health/Cancer Care Ontario stereotactic body radiation therapy (SBRT) for Spine Metastasis Guideline Development Group and published literature when available. Primary consideration was given to the perceived benefits for patients and the small likelihood of harm arising from recommendation implementation. Apart from the magnetic resonance imaging (MRI) follow-up strategy, all evidence was considered indirect and was provided by the working group in conjunction with their collective expertise in the field of SBRT. The application of an SBRT program requires a multidisciplinary team consisting of a radiation oncologist, spine surgeon, neuroradiologist, medical physicist, medical dosimetrist, and radiation therapist. In Canada, linear accelerators are the most used treatment delivery units and should follow technology-specific quality assurance procedures. Immobilization technique is location dependant. Treatment planning MRI sequences should be acquired no more than 14 days from the date of treatment. In the case of epidural disease, simulation MRI should be completed no more than 7 days from the date of treatment. After treatment, patients should be followed with routine clinical visits every 3 months for the first year, every 3 to 6 months during years 2 and 3, and every 4 to 6 months thereafter. The recommendations enclosed provide a framework for the minimum requirements for a cancer center in Ontario, Canada to offer SBRT for spine metastases.


Assuntos
Radiocirurgia , Neoplasias da Coluna Vertebral , Humanos , Radiocirurgia/métodos , Ontário , Consenso , Neoplasias da Coluna Vertebral/secundário , Aceleradores de Partículas
10.
J Neurooncol ; 163(1): 15-27, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37155133

RESUMO

PURPOSE: Stereotactic body radiotherapy (SBRT) has proven to be a highly effective treatment for selected patients with spinal metastases. Randomized evidence shows improvements in complete pain response rates and local control with lower retreatment rates favoring SBRT, compared to conventional external beam radiotherapy (cEBRT). While there are several reported dose-fractionation schemes for spine SBRT, 24 Gy in 2 fractions has emerged with Level 1 evidence providing an excellent balance between minimizing treatment toxicity while respecting patient convenience and financial strain. METHODS: We provide an overview of the 24 Gy in 2 SBRT fraction regimen for spine metastases, which was developed at the University of Toronto and tested in an international Phase 2/3 randomized controlled trial. RESULTS: The literature summarizing global experience with 24 Gy in 2 SBRT fractions suggests 1-year local control rates ranging from 83-93.9%, and 1-year rates of vertebral compression fracture ranging from 5.4-22%. Reirradiation of spine metastases that failed prior cEBRT is also feasible with 24 Gy in 2 fractions, and 1-year local control rates range from 72-86%. Post-operative spine SBRT data are limited but do support the use of 24 Gy in 2 fractions with reported 1-year local control rates ranging from 70-84%. Typically, the rates of plexopathy, radiculopathy and myositis are under 5% in those series reporting mature follow up, with no cases of radiation myelopathy (RM) reported in the de novo setting when the spinal cord avoidance structure is limited to 17 Gy in 2 fractions. However, re-irradiation RM has been observed following 2 fraction SBRT. More recently, 2-fraction dose escalation with 28 Gy, with a higher dose constraint to the critical neural tissues, has been reported suggesting improved rates of local control. This regimen may be important in those patients with radioresistant histologies, high grade epidural disease, and/or paraspinal disease. CONCLUSION: The dose-fractionation of 24 Gy in 2 fractions is well-supported by published literature and is an ideal starting point for centers looking to establish a spine SBRT program.


Assuntos
Fraturas por Compressão , Radiocirurgia , Fraturas da Coluna Vertebral , Neoplasias da Coluna Vertebral , Humanos , Radiocirurgia/efeitos adversos , Fraturas por Compressão/etiologia , Fraturas por Compressão/cirurgia , Fraturas da Coluna Vertebral/etiologia , Fraturas da Coluna Vertebral/cirurgia , Resultado do Tratamento , Coluna Vertebral/patologia , Neoplasias da Coluna Vertebral/secundário
11.
Neurosurgery ; 93(4): 813-823, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37074052

RESUMO

BACKGROUND AND OBJECTIVES: We designed a 30 Gy in 4 fractions stereotactic body radiotherapy protocol, as an alternative option to our standard 2-fraction approach, for primarily large volume, multilevel, or previously radiated spinal metastases. We report imaging-based outcomes of this novel fractionation scheme. METHODS: The institutional database was reviewed to identify all patients who underwent 30 Gy/4 fractions from 2010 to 2021. Primary outcomes were magnetic resonance-based vertebral compression fracture (VCF) and local failure per treated vertebral segment. RESULTS: We reviewed 245 treated segments in 116 patients. The median age was 64 years (range, 24-90). The median number of consecutive segments within the treatment volume was 2 (range, 1-6), and the clinical target volume (CTV) was 126.2 cc (range, 10.4-863.5). Fifty-four percent had received at least 1 previous course of radiotherapy, and 31% had previous spine surgery at the treated segment. The baseline Spinal Instability Neoplastic Score was stable, potentially unstable, and unstable for 41.6%, 51.8%, and 6.5% of segments, respectively. The cumulative incidence of local failure was 10.7% (95% CI 7.1-15.2) at 1 year and 16% (95% CI 11.5-21.2) at 2 years. The cumulative incidence of VCF was 7.3% (95% CI 4.4-11.2) at 1 year and 11.2% (95% CI 7.5-15.8) at 2 years. On multivariate analysis, age ≥68 years ( P = .038), CTV volume ≥72 cc ( P = .021), and no previous surgery ( P = .021) predicted an increased risk of VCF. The risk of VCF for CTV volumes <72 cc/≥72 cc was 1.8%/14.6% at 2 years. No case of radiation-induced myelopathy was observed. Five percent of patients developed plexopathy. CONCLUSION: 30 Gy in 4 fractions was safe and efficacious despite the population being at increased risk of toxicity. The lower risk of VCF in previously stabilized segments highlights the potential for a multimodal treatment approach for complex metastases, especially for those with a CTV volume of ≥72 cc.


Assuntos
Fraturas por Compressão , Radiocirurgia , Fraturas da Coluna Vertebral , Neoplasias da Coluna Vertebral , Idoso , Humanos , Pessoa de Meia-Idade , Fraturas por Compressão/etiologia , Radiocirurgia/efeitos adversos , Radiocirurgia/métodos , Fraturas da Coluna Vertebral/etiologia , Neoplasias da Coluna Vertebral/diagnóstico por imagem , Neoplasias da Coluna Vertebral/radioterapia , Neoplasias da Coluna Vertebral/patologia , Coluna Vertebral/cirurgia , Adulto Jovem , Adulto , Idoso de 80 Anos ou mais
12.
J Neurooncol ; 162(1): 119-128, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36914878

RESUMO

INTRODUCTION: Various treatment options exist to salvage stereotactic radiosurgery (SRS) failures for brain metastases, including repeat SRS and hypofractionated SRS (HSRS). Our objective was to report outcomes specific to salvage HSRS for brain metastases that failed prior HSRS/SRS. METHODS: Patients treated with HSRS to salvage local failures (LF) following initial HSRS/SRS, between July 2010 and April 2020, were retrospectively reviewed. The primary outcomes were the rates of LF, radiation necrosis (RN), and symptomatic radiation necrosis (SRN). Univariable (UVA) and multivariable (MVA) analyses using competing risk regression were performed to identify predictive factors for each endpoint. RESULTS: 120 Metastases in 91 patients were identified. The median clinical follow up was 13.4 months (range 1.1-111.1), and the median interval between SRS courses was 13.1 months (range 3.0-56.5). 115 metastases were salvaged with 20-35 Gy in 5 fractions and the remaining five with a total dose ranging from 20 to 24 Gy in 3-fractions. 67 targets (56%) were postoperative cavities. The median re-treatment target volume and biological effective dose (BED10) was 9.5 cc and 37.5 Gy, respectively. The 6- and 12- month LF rates were 18.9% and 27.7%, for RN 13% and 15.6%, and for SRN were 6.1% and 7.0%, respectively. MVA identified larger re-irradiation volume (hazard ratio [HR] 1.02, p = 0.04) and shorter interval between radiosurgery courses (HR 0.93, p < 0.001) as predictors of LF. Treatment of an intact target was associated with a higher risk of RN (HR 2.29, p = 0.04). CONCLUSION: Salvage HSRS results in high local control rates and toxicity rates that compare favorably to those single fraction SRS re-irradiation experiences reported in the literature.


Assuntos
Neoplasias Encefálicas , Lesões por Radiação , Radiocirurgia , Humanos , Radiocirurgia/efeitos adversos , Radiocirurgia/métodos , Estudos Retrospectivos , Terapia de Salvação , Neoplasias Encefálicas/secundário , Lesões por Radiação/etiologia , Necrose/etiologia , Resultado do Tratamento
13.
Phys Med ; 106: 102533, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36724551

RESUMO

PURPOSE: To develop a machine learning-based, 3D dose prediction methodology for Gamma Knife (GK) radiosurgery. The methodology accounts for cases involving targets of any number, size, and shape. METHODS: Data from 322 GK treatment plans was modified by isolating and cropping the contoured MRI and clinical dose distributions based on tumor location, then scaling the resulting tumor spaces to a standard size. An accompanying 3D tensor was created for each instance to account for tumor size. The modified dataset for 272 patients was used to train both a generative adversarial network (GAN-GK) and a 3D U-Net model (U-Net-GK). Unmodified data was used to train equivalent baseline models. All models were used to predict the dose distribution of 50 out-of-sample patients. Prediction accuracy was evaluated using gamma, with criteria of 4 %/2mm, 3 %/3mm, 3 %/1mm and 1 %/1mm. Prediction quality was assessed using coverage, selectivity, and conformity indices. RESULTS: The predictions resulting from GAN-GK and U-Net-GK were similar to their clinical counterparts, with average gamma (4 %/2mm) passing rates of 84.9 ± 15.3 % and 83.1 ± 17.2 %, respectively. In contrast, the gamma passing rate of baseline models were significantly worse than their respective GK-specific models (p < 0.001) at all criterion levels. The quality of GK-specific predictions was also similar to that of clinical plans. CONCLUSION: Deep learning models can use GK-specific data modification to predict 3D dose distributions for GKRS plans with a large range in size, shape, or number of targets. Standard deep learning models applied to unmodified GK data generated poorer predictions.


Assuntos
Aprendizado Profundo , Neoplasias , Radiocirurgia , Humanos , Radiocirurgia/métodos , Neoplasias/cirurgia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos
14.
Clin Transl Radiat Oncol ; 39: 100582, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36699195

RESUMO

Purpose: Magnetic resonance image-guided radiotherapy for intracranial indications is a promising advance; however, uncertainties remain for both target localization after translation-only MR setup and intrafraction motion. This investigation quantified these uncertainties and developed a population-based planning target volume (PTV) model to explore target and organ-at-risk (OAR) volumetric coverage tradeoffs. Methods: Sixty-six patients, 49 with a primary brain tumor and 17 with a post-surgical resection cavity, treated on a 1.5T-based MR-linac across 1329 fractions were included. At each fraction, patients were setup by translation-only fusion of the online T1 MRI to the planning image. Each fusion was independently repeated offline accounting for rotations. The six degree-of-freedom difference between fusions was applied to transform the planning CTV at each fraction (CTVfx). A PTV model parameterized by volumetric CTVfx coverage, proportion of fractions, and proportion of patients was developed. Intrafraction motion was quantified in a 412 fraction subset as the fusion difference between post- and pre-irradiation T1 MRIs. Results: For the left-right/anterior-posterior/superior-inferior axes, mean ± SD of the rotational fusion differences were 0.1 ± 0.8/0.1 ± 0.8/-0.2 ± 0.9°. Covering 98 % of the CTVfx in 95 % of fractions in 95 % of patients required a 3 mm PTV margin. Margin reduction decreased PTV-OAR overlap; for example, the proportion of optic chiasm overlapped by the PTV was reduced up to 23.5 % by margin reduction from 4 mm to 3 mm. Conclusions: An evidence-based PTV model was developed for brain cancer patients treated on the MR-linac. Informed by this model, we have clinically adopted a 3 mm PTV margin for conventionally fractionated intracranial patients.

15.
Int J Radiat Oncol Biol Phys ; 115(3): 686-695, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36309076

RESUMO

PURPOSE: Stereotactic body radiation therapy (SBRT) for spine metastases improves pain response rates compared with conventional external beam radiation therapy; however, the optimal fractionation schedule is unclear. We report local control and toxicity outcomes after dose-escalated 2-fraction spine SBRT. METHODS AND MATERIALS: A prospectively maintained institutional database of over 600 patients and 1400 vertebral segments treated with spine SBRT was reviewed to identify those prescribed 28 or 24 Gy in 2 daily fractions. The primary endpoint was magnetic resonance imaging based local failure (LF), and secondary endpoints included overall survival and vertebral compression fracture (VCF). RESULTS: A total of 947 treated vertebral segments in 482 patients were identified, of which 301 segments in 159 patients received 28 Gy, and 646 segments in 323 patients received 24 Gy in 2 fractions. Median follow-up per patient was 23.5 months, and median overall survival was 49.1 months. In the 28 Gy cohort, the 6-, 12-, and 24-month cumulative incidences of LF were 3.5%, 5.4%, and 11.1%, respectively, versus 6.0%, 12.5%, and 17.6% in the 24 Gy cohort, respectively (P = .008). On multivariable analysis, 24 Gy (hazard ratio [HR], 1.525; 95% confidence interval, 1.039-2.238; P = .031), paraspinal disease extension (HR, 1.422; 95% confidence interval, 1.010-2.002; P = .044), and epidural extension in either radioresistant or radiosensitive histologies (HR, 2.117 and 1.227, respectively; P = .003) were prognostic for higher rates of LF. Risk of VCF was 5.5%, 7.6%, and 10.7% at 6, 12, and 24 months, respectively, and was similar between cohorts (P = .573). Spinal malalignment (P < .001), baseline VCF (P = .003), junctional spine location (P = .030), and greater minimum dose to 90% of planning target volume were prognostic for higher rates of VCF. CONCLUSIONS: Dose escalation to 28 Gy in 2 daily fractions was associated with improved local control without increasing the risk of VCF. The 2-year local control rates are consistent with those predicted by the Hypofractionated Treatment Effects in the Clinic spine tumor control probability model, and these data will inform a proposed dose escalation randomized trial.


Assuntos
Fraturas por Compressão , Radiocirurgia , Fraturas da Coluna Vertebral , Neoplasias da Coluna Vertebral , Humanos , Fraturas por Compressão/etiologia , Prognóstico , Radiocirurgia/efeitos adversos , Radiocirurgia/métodos , Fraturas da Coluna Vertebral/etiologia , Neoplasias da Coluna Vertebral/diagnóstico por imagem , Neoplasias da Coluna Vertebral/radioterapia , Neoplasias da Coluna Vertebral/patologia , Coluna Vertebral/diagnóstico por imagem , Coluna Vertebral/patologia
16.
J Neurosurg ; 138(3): 674-682, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35986735

RESUMO

OBJECTIVE: With the incorporation of real-time image guidance on the Gamma Knife system allowing for mask-based immobilization (Gamma Knife Icon [GKI]), conventionally fully fractionated (1.8-3.0 Gy/day) GKI radiation can now be delivered to take advantage of an inherently minimal margin for delivery uncertainty, sharp dose falloff, and inhomogeneous dose distribution. This case series details the authors' preliminary experience in re-irradiating 7 complex primary intracranial tumors, which were considered to have been previously maximally radiated and situated adjacent to critical organs at risk. METHODS: The authors retrospectively reviewed all patients who received fractionated re-irradiation using GKI at the Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada, between 2016 and 2021. Patients with brain metastases, and those who received radiotherapy courses in 5 or fewer fractions, were excluded. All radiotherapy doses were converted to the equivalent total dose in 2-Gy fractions (EQD2), with the assumption of an α/ß ratio of 2 for late normal tissue toxicity and 10 for the tumor. RESULTS: A total of 7 patients were included in this case series. Three patients had recurrent meningiomas, as well as 1 patient each with ependymoma, intracranial sarcoma, pituitary macroadenoma, and papillary pineal tumor. Six patients had undergone prior linear accelerator-based conventional fractionated radiotherapy and 1 patient had undergone prior proton therapy. Patients were re-irradiated with a median (range) total dose of 50.4 (30-63.4) Gy delivered in a median (range) of 28 (10-38) fractions with GKI. The median (range) target volume was 6.58 (0.2-46.3) cm3. The median (range) cumulative mean EQD2 administered to the tumor was 121.1 (107.9-181.3) Gy, and the median (range) maximum point EQD2 administered to the brainstem, optic nerves, and optic chiasm were 91.6 (74.0-111.5) Gy, 58.9 (6.3-102.9) Gy, and 59.9 (36.7-127.3) Gy, respectively. At a median (range) follow-up of 15 (6-42) months, 6 of 7 patients were alive with 4 having locally controlled disease. Only 3 patients experienced treatment-related toxicities, which were self-limited. CONCLUSIONS: Fractionated radiotherapy using GKI may be a safe and effective method for the re-irradiation of complex progressive primary intracranial tumors, where the aim is to minimize the potential for serious late effects.


Assuntos
Neoplasias Encefálicas , Neoplasias Meníngeas , Radiocirurgia , Reirradiação , Humanos , Seguimentos , Estudos Retrospectivos , Estudos de Viabilidade , Neoplasias Encefálicas/cirurgia , Radiocirurgia/métodos , Neoplasias Meníngeas/cirurgia , Ontário
17.
Front Oncol ; 12: 1060098, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518316

RESUMO

Purpose: This study reports the workflow and initial clinical experience of high grade glioma (HGG) radiotherapy on the 1.5 T MR-Linac (MRL), with a focus on the temporal variations of the tumor and feasibility of multi-parametric image (mpMRI) acquisition during routine treatment workflow. Materials and methods: Ten HGG patients treated with radiation within the first year of the MRL's clinical operation, between October 2019 and August 2020, were identified from a prospective database. Workflow timings were recorded and online adaptive plans were generated using the Adapt-To-Position (ATP) workflow. Temporal variation within the FLAIR hyperintense region (FHR) was assessed by the relative FHR volumes (n = 281 contours) and migration distances (maximum linear displacement of the volume). Research mpMRIs were acquired on the MRL during radiation and changes in selected functional parameters were investigated within the FHR. Results: All patients completed radiotherapy to a median dose of 60 Gy (range, 54-60 Gy) in 30 fractions (range, 30-33), receiving a total of 287 fractions on the MRL. The mean in-room time per fraction with or without post-beam research imaging was 42.9 minutes (range, 25.0-69.0 minutes) and 37.3 minutes (range, 24.0-51.0 minutes), respectively. Three patients (30%) required re-planning between fractions 9 to 12 due to progression of tumor and/or edema identified on daily MRL imaging. At the 10, 20, and 30-day post-first fraction time points 3, 3, and 4 patients, respectively, had a FHR volume that changed by at least 20% relative to the first fraction. Research mpMRIs were successfully acquired on the MRL. The median apparent diffusion coefficient (ADC) within the FHR and the volumes of FLAIR were significantly correlated when data from all patients and time points were pooled (R=0.68, p<.001). Conclusion: We report the first clinical series of HGG patients treated with radiotherapy on the MRL. The ATP workflow and treatment times were clinically acceptable, and daily online MRL imaging triggered adaptive re-planning for selected patients. Acquisition of mpMRIs was feasible on the MRL during routine treatment workflow. Prospective clinical outcomes data is anticipated from the ongoing UNITED phase 2 trial to further refine the role of MR-guided adaptive radiotherapy.

18.
J Neurooncol ; 160(1): 265-272, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36203028

RESUMO

PURPOSE: To provide evidence towards a quantitative response assessment framework incorporating MRI-based linear measurements for spinal metastasis that predicts outcome following stereotactic body radiation therapy (SBRT). METHODS: Adult patients with de novo spinal metastases treated with SBRT between 2008 and 2018 were retrospectively assessed. The metastatic lesions involving the pedicles, articular processes, lamina, transverse process, spinous process and vertebral body at leach level were measured separately using linear measurements on pre- and all post-SBRT MRIs. The outcome was segment-specific progression (SSP) using SPINO guidelines which was dated to the first clinical documentation of progression, or the date of the associated MRI if imaging was the reason for progression. Random forest analysis for variable selection and recursive partitioning analysis for SSP probability prediction were used. RESULTS: Five Hundred Ninety-three spinal levels (323 patients) from 4081 MRIs were evaluated. The appearance of new T1 hypointensity and increase in Bilsky grade had an odds ratio (OR) of 33.5 and 15.5 for SSP, respectively. Compared to baseline, an increase of > 3 mm in any lesion dimension, combined with a 1.67-fold increase in area, had an OR of 4.6 for SSP. The sensitivity, specificity, positive predictive value, negative predictive value, balanced accuracy and area under the curve of the training model were 96.7%, 89.6%, 28.6%, 99.8%, 93.2% and 0.905 and of the test model were 91.3%, 89.3%, 27.1% 99.6%, 90.3% and 0.933, respectively. CONCLUSION: With further refinement and validation in prospective multicentre studies, MRI-based linear measurements can help predict response assessment in SBRT-treated spinal metastases.


Assuntos
Radiocirurgia , Neoplasias da Coluna Vertebral , Adulto , Humanos , Radiocirurgia/métodos , Neoplasias da Coluna Vertebral/diagnóstico por imagem , Neoplasias da Coluna Vertebral/radioterapia , Neoplasias da Coluna Vertebral/secundário , Estudos Prospectivos , Estudos Retrospectivos , Imageamento por Ressonância Magnética
19.
Technol Cancer Res Treat ; 21: 15330338221124695, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36071647

RESUMO

Introduction: Magnetic resonance imaging-linear accelerator radiotherapy is an innovative technology that requires special consideration for secondary electron interactions within the magnetic field, which can alter dose deposition at air-tissue interfaces. As part of ongoing quality assurance and quality improvement of new radiotherapy technologies, the purpose of this study was to evaluate skin dose modelled from the treatment planning systems of a magnetic resonance imaging-linear accelerator and a conventional linear accelerator, and then correlate with in vivo measurements of delivered skin dose from each linear accelerator. Methods: In this prospective cohort study, 37 consecutive glioma patients had treatment planning completed and approved prior to radiotherapy initiation using commercial treatment planning systems: a Monte Carlo-based algorithm for magnetic resonance imaging-linear accelerator or a convolution-based algorithm for conventional linear accelerator. In vivo skin dose was measured using an optically stimulated luminescent dosimeter. Results: Monte Carlo-based magnetic resonance imaging-linear accelerator plans and convolution-based conventional linear accelerator plans had similar dosimetric parameters for target volumes and organs-at-risk. However, magnetic resonance imaging-linear accelerator plans had 1.52 Gy higher mean dose to air cavities (P < .0001) and 1.10 Gy higher mean dose to skin (P < .0001). In vivo skin dose was 14.5% greater for magnetic resonance imaging-linear accelerator treatments (P = .0027), and was more accurately predicted by Monte Carlo-based calculation (ρ = 0.95, P < .0001) versus convolution-based (ρ = 0.80, P = .0096). Conclusion: This is the first prospective dosimetric comparison of glioma patients clinically treated on both magnetic resonance imaging-linear accelerator and conventional linear accelerator. Our findings suggest that skin doses were significantly greater with magnetic resonance imaging-linear accelerator plans but correlated better with in vivo measurements of actual skin dose from delivered treatments. Future magnetic resonance imaging-linear accelerator planning processes are being designed to account for skin dosimetry and treatment delivery.


Assuntos
Glioma , Planejamento da Radioterapia Assistida por Computador , Glioma/diagnóstico por imagem , Glioma/radioterapia , Humanos , Imageamento por Ressonância Magnética/métodos , Aceleradores de Partículas , Estudos Prospectivos , Planejamento da Radioterapia Assistida por Computador/métodos
20.
J Neurooncol ; 159(3): 705-712, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35999435

RESUMO

OBJECTIVE: Gamma Knife Icon-based hypofractionated stereotactic radiosurgery (GKI-HSRS) is a novel technical paradigm in the treatment of brain metastases that allows for both the dosimetric benefits of the GKI stereotactic radiosurgery (SRS) platform as well as the biologic benefits of fractionation. We report mature local control and adverse radiation effect (ARE) outcomes following 5 fraction GKI-HSRS for intact brain metastases. METHODS: Patients with intact brain metastases treated with 5-fraction GKI-HSRS were retrospectively reviewed. Survival, local control, and adverse radiation effect rates were determined. Univariable and multivariable regression (MVA) were performed on potential predictive factors. RESULTS: Two hundred and ninety-nine metastases in 146 patients were identified. The median clinical follow-up was 10.7 months (range 0.5-47.6). The median total dose and prescription isodose was 27.5 Gy (range, 20-27.5) in 5 daily fractions and 52% (range, 45-93), respectively. The median overall survival (OS) was 12.7 months, and the 1-year local failure rate was 15.2%. MVA identified a total dose of 27.5 Gy vs. ≤ 25 Gy (hazard ratio [HR] 0.59, p = 0.042), and prior chemotherapy exposure (HR 1.99, p = 0.015), as significant predictors of LC. The 1-year ARE rate was 10.8% and the symptomatic ARE rate was 1.8%. MVA identified a gross tumor volume of ≥ 4.5 cc (HR 7.29, p < 0.001) as a significant predictor of symptomatic ARE. CONCLUSION: Moderate total doses in 5 daily fractions of GKI-HSRS were associated with high rates of LC and a low incidence of symptomatic ARE.


Assuntos
Produtos Biológicos , Neoplasias Encefálicas , Radiocirurgia , Fracionamento da Dose de Radiação , Humanos , Radiocirurgia/efeitos adversos , Estudos Retrospectivos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...